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TABLE I
SUBSET OF THE SUBPROBLEMS PRESENTED BY ELIAS ET AL. [1].

Subproblem Formulation

SP1 min ∥R(hi, θi)x1 − x2∥2
SP2 min ∥R(hi, θi)x1 −R(hj , θj)x2∥2
SP3 min

∣∣∥R(hi, θi)x1 − x2∥2 − d
∣∣

SP4 min
∣∣hT

i R(hj , θj)x1 − d
∣∣

SP5 x0 +R(hi, θi)x1 = R(hj , θj) (x2 +R(hk, θk)x3)

SP6
hT
i R(hj , θj)x1 + hT

l R(hk, θk)x2 = d1

hT
mR(hj , θj)x3 + hT

nR(hk, θk)x4 = d2

We denote a vector displacement as xn ∈ R3, scalars as dn ∈ R, unit
vectors of rotation as hn ∈ R3 and corresponding angles as θn. The given
formulations are independent of any particular manipulator kinematics.

I. EXTENDED APPENDIX: AN OVERVIEW

Manipulators with fewer than four joint axes can be
parametrized using only position or orientation constraints.
For manipulators with four or more joints, we use a full
6DOF pose for our input constraints. As this parametrization
can impose more constraints than needed for 4R and 5R
manipulators, it is up to the user to ensure the given rotation
and position are compatible for the respective manipulator.
Unreachable poses result in least-squares solution sets. As we
perform the inverse kinematic calculations for some angles
based on orientation constraints and some based on position
constraints, some solutions will be viable to achieve either
the desired position or orientation, but not both. Hence,
we compute the forward kinematics based on the obtained
solution set and rule out (denote as approximate) solutions
that do not result in the desired pose.

In the following derivations, we only consider cases of in-
tersecting/parallel axes that resemble an analytically solvable
manipulator, i.e., one that is not redundant in any pose with
respect to the chosen parametrization (position/orientation
IK). All proposed cases are hereby strictly necessary to
check for, as additional intersecting/parallel axes can lead to
solution continuities within the suproblems if not considered.

All analytically solvable manipulators with four (or fewer)
rotational axes are solvable by the proposed subproblem
decompositions (sometimes only after kinematic inversion).
Contrarily, 5R manipulators must meet at least one of the
following sufficient criteria to be analytically solvable:

• The last or first two axes 1,2 (5,6) intersect.
• The intermediate axes 2,3 (3,4) intersect while the axes

3,4 (2,3) are parallel.
• Any three consecutive axes are parallel.

Additional intersecting/parallel axes – as long as they do not
lead to implicit redundancies – lead to further simplifications,
which we also account for.

II. 1R MANIPULATORS

The forward kinematics for a 1R manipulator are given
via:

0pEE = 0p1 +
0R1

1pEE (1)
0R∗

EE = 0R1
1R∗

EE . (2)

The IK can be solved either given a desired position by
applying SP1 to (3) or via a desired orientation by applying
SP1 to (4). ∥∥0R1

1pEE −
(
0pEE − 0p1

)∥∥ = 0 (3)∥∥0R1hn − 0R∗
EE

1R∗T
EEhn

∥∥ = 0 (4)

III. 2R MANIPULATORS

The forward kinematics for a 2R manipulator are given
via:

0pEE = 0p1 +
0R1

(
1p2 +

1R2
1p2

)
(5)

0R∗
2 = 0R∗

EE
2R∗T

EE = 0R1
1R2 . (6)

a) Position IK: Two cases must be distinguished when
solving the IK for a given position: the axes intersect, or they
do not. If the two axes of the manipulator intersect, we can
choose 1p2 = 0 to obtain (7) from (5). We subsequently use
SP2 on (7) to obtain θ1, θ2.

0RT
1

(
0pEE − 0p1

)
− 1R2

2pEE = 0 (7)

If, on the other hand, the two axes do not intersect, we
leverage norm-preservation on (5) to obtain (8). We apply
SP3 to (8) to obtain θ2.∥∥1R2

2pEE + 1p2

∥∥−
∥∥1pEE

∥∥ = 0 (8)

By reformulating (5) and inserting the calculated θ2, we
obtain (9). We obtain θ1 by applying SP1 to (9).

0R1

(
1p2 +

1R∗
2
2pEE

)
−
(
0pEE − 0p1

)
= 0 (9)

b) Orientation IK: The orientation kinematics can only
be analytically solved if the two axes are not parallel. Oth-
erwise, the manipulator is redundant in every configuration
for its orientation IK. We obtain a vector hn that is normal
to the rotated axis h1 and the axis h2 via (10). After
reformulating (6) and right-multiply with hn, we obtain (11).
Applying SP2 to (11) subsequently yields θ1, θ2.

hn = 0R∗T
EEh1 × h2 (10)

0RT
1

0R∗
2hn − 1R2hn = 0 (11)



IV. 3R MANIPULATORS

The forward kinematics for a 3R manipulator are given
via (12). In the following, we will use 1pEE for conciseness
as denoted in (13).

0pEE = 0p1 +
0R1

1p2 +
0R2

2p3 +
0R3

3pEE (12)
1pEE = 0pEE − 0p1 (13)
0R3 = 0REE

3R∗T
EE = 0R1

1R2
2R3 (14)

a) Position IK: If no two consecutive axes are paral-
lel and no axes intersect, we can directly apply SP5 to (12)
and obtain θ1, θ2, θ3.

If the first two axes intersect we can choose 1p2 = 0,
rephrase (12) according to (15), and then leverage norm-
preservation to obtain (16). Applying SP3 to (16) yields θ3.

1RT
2

0RT
1

1pEE = 2R3
3pEE + 2p3 (15)∥∥1pEE

∥∥ =
∥∥2R3

3pEE + 2p3

∥∥ (16)

Inserting the calculated value for θ3 into a rephrased version
of (12) yields (17). Applying SP2 to (17) yields θ1, θ2.

0RT
1

1pEE = 1R2

(
2p3 +

2R∗
3
3pEE

)
(17)

If the first two axes are parallel we can choose h1 = h2.
We left-multiply (12) with h1 to obtain (18). Applying SP4
to (18) yields θ3. By inserting θ3 into a rephrased version
of (12), we get (19), which simplifies to (20) after leveraging
the norm-preserving property.

hT
1

(
1pEE − 1p2 − 2p3

)
= hT

1
2R3

3p4 (18)
0RT

1
1pEE = 1R2

(
2p3 +

2R∗
3
3pEE

)
+ 1p2 (19)∥∥1pEE

∥∥ =
∥∥1R2

(
2p3 +

2R∗
3
3pEE

)
+ 1p2

∥∥ (20)

We apply SP3 to (20) to obtain θ2. Plugging θ2, θ3 into (12)
yields (21), from which we obtain θ1 via SP1.

0RT
1

1pEE − 1R∗
2

(
2p3 +

2R∗
3
3pEE

)
= 0 (21)

b) Orientation IK: If no consecutive two axes are
parallel we rephrase (14), left-multiply with hT

3 and right-
multiply with h1 to obtain (22), which simplifies to (23).
Applying SP4 to (23) yields θ2.

hT
3

0R∗T
3

0R1h1 = hT
3

2RT
3

1RT
2 h1 (22)

hT
3

0R∗T
3 h1 = hT

3
1RT

2 h1 (23)

We insert θ2 into a rephrased version of (14) and right-
multiply with h3. This yields (24), which simplifies to (25).
We obtain θ1 from (25) by applying SP1.

0RT
1

0R∗
3
2RT

3 h3 = 1R∗
2h3 (24)

0RT
1

0R∗
3h3 = 1R∗

2h3 (25)

Let hn denote a vector normal to h3. We again
rephrase (14), insert θ1, θ2, and right-multiply with hn to
obtain (26). Applying SP1 to (26) finally yields θ3.

2R3hn = 1R∗T
2

0R∗T
1

0R∗
3hn (26)

If the first two axes are parallel We rephrase according
to (22), but without left-multiplication with hT

3 , which, after
simplification, yields (27). Applying SP1 to (27) yields θ3.

0R∗T
3 h1 = 2RT

3 h1 (27)

Inserting θ3 into a rephrased version of (14) yields (28),
which simplifies to (29). We obtain θ1 by applying SP1
to (29).

0RT
1

0R∗
3
2R∗T

3 h2 = 1R2h2 (28)
0RT

1
0R∗

3
2R∗T

3 h2 = h2 (29)
1R2h3 = 0R∗T

1
0R∗

3
2R∗T

3 h3 (30)

Inserting θ1, θ3 into a rephrased version of (14) yields (30).
We apply SP1 to (30) for θ2.

If the manipulator does not match any of the above cases,
we use kinematic inversion and solve the inverted kinematic
chain with the previous derivations.

V. 4R MANIPULATORS

In contrast to the prior manipulators with less than four
degrees of freedom, we now consider both the end effector
position and orientation as given.

The forward position kinematics for a 4R manipulator are
given by (31). As the rotation 0R∗

4 is known as per the
orientation kinematics in (33), we can break down (31) to
the translation 1p4 according to (32).

0pEE = 0p1 +
0R1

1p2 +
0R2

2p3

+ 0R3
3p4 +

0R4
4pEE (31)

1p4 = 0pEE − 0p1 − 0R∗
4
4pEE

= 0R1
1p2 +

0R2
2p3 +

0R3
3p4 (32)

0R∗
4 = 0R∗

EE
4R∗T

EE = 0R1
1R2

2R3
3R4 (33)

If no consecutive pair of axes is parallel or intersects,
we can rewrite (32) according to (34), to which we directly
apply SP5 to obtain θ1, θ2, θ3.

0RT
1

1p4 − 1p2 = 1R2

(
2p3 +

2R3
3p4

)
(34)

3R4hn − 2R∗T
3

1R∗T
2

0R∗T
1

0R∗
4hn = 0 (35)

Further, we insert the obtained joint values into (33) and,
after rephrasing, obtain (35). The vector hn is hereby chosen
normal to h4. We obtain θ4 by applying SP1 to (35).

If the first two axes are parallel, we can choose h1 = h2.
We left-multiply (32) with hT

1 to obtain (36), from which
we obtain θ3 via SP4.

hT
1

2R3
3p4 = hT

1

(
1p4 − 1p2 − 2p3

)
(36)

Rephrasing (32) and inserting θ3 yields (37), which, via
norm-preservation, results in (38). Applying SP3 to (38)
yields θ1.

0RT
1

1p4 − 1p2 = 1R2

(
2p3 +

2R∗
3
3p4

)
(37)∥∥0RT

1
1p4 − 1p2

∥∥ =
∥∥2p3 +

2R∗
3
3p4

∥∥ (38)



Inserting θ1 back into (37) yields (39), from which we obtain
θ2 via SP1. Finally, we insert θ1, θ2, θ3 into (33) and right-
multiply by the vector hn – which we choose such that it is
normal to h4 – to obtain (40). We retrieve θ4 by applying
SP1 to (40).

1R2

(
2p3 +

2R∗
3
3p4

)
−
(
0R∗T

1
1p4 − 1p2

)
= 0 (39)

3RT
4 hn − 0R∗T

4
0R∗

1
1R∗

2
2R∗

3hn = 0 (40)

If the second and third axis are parallel, we can choose
h2 = h3. We start off by rephrasing (32) according to (41).
When left-multiplying (41) with h1, it simplifies to (42), to
which we apply SP4 to obtain θ1.

2RT
3

1RT
2

0RT
1

1p4 = 2RT
3

(
1RT

2
1p2 +

2p3

)
+ 3p4 (41)

hT
2

0RT
1

1p4 = hT
2

(
1p2 +

2p3 +
3p4

)
(42)

We rephrase (32) according to (34), insert θ1, and leverage
norm-preservation to obtain (43). Applying SP3 to (43)
yields θ3. Inserting θ1, θ3 back into (34) yields (44), which
we can solve via SP1 for θ2.∥∥0R∗T

1
1p4 − 1p2

∥∥ =
∥∥2R3

3p4 +
2p3

∥∥ (43)
1R2

(
2p3 +

2R∗
3
3p4

)
−
(
0R∗T

1
1p4 − 1p2

)
= 0 (44)

Just like before, we insert θ1, θ2, θ3 into (33) and right-
multiply by the vector hn (normal to h4) to obtain (40).
We retrieve θ4 by applying SP1 to (40).

If the second and third axis intersect, we can choose
2p3 = 0, which simplifies (32) to (45). Employing norm-
preservation on (45) results in (46), from which we obtain
θ1 through SP3.

1p4 − 0R1
1p2 = 0R1

1R2
2R3

3p4 (45)∥∥1p4 − 0R1
1p2

∥∥ =
∥∥3p4

∥∥ (46)

Rephrasing (45) and inserting θ1 yields (47), to which we
apply SP2 to obtain θ2, θ3.

1RT
2

(
0R∗T

1
1p4 − 1p2

)
= 2R3

3p4 (47)

Just as in the two prior cases, we insert θ1, θ2, θ3 into (33)
and right-multiply by the vector hn (normal to h4) to
obtain (40). We then retrieve θ4 by applying SP1 to (40).

If the third and fourth axis intersect, we can choose
3p4 = 0 and hence simplify (32) to (48), which can be
rephrased to (49). Imposing the L2 norm on both sides
of (49) results in (50), from which we obtain θ1 via SP3.

1p4 = 0R1
1p2 +

0R2
2p3 (48)

0RT
1

1p4 − 1p2 = 1R2
2p3 (49)∥∥0RT

1
1p4 − 1p2

∥∥ =
∥∥2p3

∥∥ (50)

After inserting θ1 back into (49), we can directly apply SP1
to retrieve θ2. Finally, we rephrase (33), insert θ1, θ2, and
right-multiply with a vector hn that is normal to h4 to
obtain (51). Applying SP2 to (51) then yields θ3, θ4.

2RT
3

1R∗T
2

0R∗T
1

0R∗
4hn = 3R4hn (51)

If the first and last two axes intersect in a separate point,
we can choose 1p2 = 0 and 3p4 = 0 to simplify (32) to (52).
We rephrasing (52) according to (53), to which we apply SP2
to obtain θ1, θ2.

1p4 = 0R2
2p3 (52)

0RT
1

1p4 = 1R2
2p3 (53)

We rephrase (33), insert θ1, θ2, and right-multiply by a vector
hn that is normal to h4 to obtain (54). Applying SP2 to (54)
subsequently yields θ3, θ4.

2RT
3

1R∗T
2

0R∗T
1

0R∗
4hn = 3R4hn (54)

If the last three axes intersect in a common point (i.e.,
form a spherical wrist), we can choose 2p3 = 0 and 3p4 =
0 to simplify (32) to (55). We directly obtain θ1 from (55)
by applying SP1.

1p4 = 0R1
1p2 (55)

Rephrasing (33) and inserting θ1 yields (56). Right-
multiplying (56) with h4 simplifies it to (56). Applying SP2
to (56) yields θ2, θ3.

1RT
2

0R∗T
1

0R∗
4 = 2R3

3R4 (56)
1RT

2
0R∗T

1
0R∗

4h4 = 2R3h4 (57)

Again, we insert θ1, θ2, θ3 into (33) and right-multiply by the
vector hn (normal to h4) to obtain (40). We then retrieve θ4
by applying SP1 to (40).

In any case, we use kinematic inversion and check if
the inverted kinematic chain matches a case that is more
specialized (i.e., represents a case that employs simpler
subproblems) than that of the non-inverted one. We hereby
first check for a spherical wrist (i.e., three axes at either end
of the manipulator intersecting in a common point) and then
all the other cases. The most general case (no consecutive
intersecting or parallel axes) is only chosen if, and only if,
no other case matches.

VI. 5R MANIPULATORS

As mentioned Section I, only certain 5R manipulators are
currently known to us to be analytically solvable per our
method. Hence, the following list of cases is not exhaustive.
Non-redundant (analytically solvable) 5R manipulators might
exist that fall into neither of the following categories.

Like for 4R manipulators, we consider both the desired
end effector position and orientation as given. When lever-
aging the same simplifications as in (32), we obtain a concise
formulation for the forward kinematics of a 5R manipulator
via (58) and (59).

1p5 = 0R1
1p2 +

0R2
2p3

+ 0R3
3p4 +

0R4
4p5 (58)

0R∗
5 = 0R∗

EE
5R∗T

EE = 0R1
1R2

2R3
3R4

4R5 (59)

If the last two axes intersect, we can choose 4p5 = 0 such
that (58) simplifies to (60). We obtain θ1, θ2, θ3 by applying



SP5 to (60). We rephrase (59), insert θ1, θ2, θ3, and right-
multiply with a vector hn that is normal to h5 to obtain (61).
Applying SP2 to (61) yields θ4, θ5.

0RT
1

1p5 = 1p2 +
1R2

2p3 +
1R2

2R3
3p4 (60)

3RT
4

2R∗T
3

1R∗T
2

0R∗T
1

0R∗
5hn = 4R5hn (61)

If the last two axes intersect while also the second and
third axis intersect, we can choose 4p5 = 0 and 2p3 = 0
such that (58) simplifies to (62). Using the norm-preservation
property, we further simplify (62) to (63). We apply SP3
to (63) to obtain θ1.

0RT
1

1p5 − 1p2 = 1R2
2R3

3p4 (62)∥∥0RT
1

1p5 − 1p2

∥∥ =
∥∥3p4

∥∥ (63)

Inserting θ1 into a rephrased version of (62) yields (64), to
which we apply SP2 to retrieve θ2, θ3.

1RT
2

(
0R∗T

1
1p5 − 1p2

)
= 2R3

3p4 (64)

Finally, we insert θ1, θ2, θ3 into (59), rephrase it, and right-
multiply with a vector hn that is normal to h5 to obtain (65).
We then apply SP2 to (65) to obtain θ4, θ5

4R5hn = 3RT
4

2R∗T
3

1R∗T
2

0R∗T
1

0R∗
5hn (65)

If the last two axes intersect while also the first two
axes intersect, we can choose 4p5 = 0 and 1p2 = 0 such
that (58) simplifies to (66). Using norm-preservation on (66)
yields (67), to which we apply SP3 for θ3.

0RT
1

1p5 = 1R2

(
2p3 +

2R3
3p4

)
(66)∥∥1p5

∥∥ =
∥∥2p3 +

2R3
3p4

∥∥ (67)

After inserting θ3 back into (66), we can directly apply SP2
to it and subsequently obtain θ1, θ2. For θ4, θ5, we follow the
same procedure as in the previous case to end up at (65), to
which we then obtain SP2 to yield θ4, θ5.

If the last two axes intersect while the first two axes
are parallel, we can choose 4p5 = 0 and h1 = h2. Equa-
tion (58) then simplifies to (60). Left-multiplication of (60)
by hT

1 further simplifies it to (68). We apply SP4 to (68) to
obtain θ3.

hT
1

2R3
3p4 = hT

1

(
1p5 − 1p2 − 2p3

)
(68)

Inserting θ3 into (60) yields (69), which, after using norm-
preservation, simplifies to (70). Applying SP3 to (70) yields
θ1. We insert θ1 back into (69), apply SP1 to it, and thus
obtain θ2.

0RT
1

1p5 − 1p2 = 1R2

(
2p3 +

2R∗
3
3p4

)
(69)∥∥0RT

1
1p5 − 1p2

∥∥ =
∥∥2p3 +

2R3
3p4

∥∥ (70)

For θ4, θ5, we follow the same procedure as in the previous
two case.

If the last two axes intersect while the second and third
axis are parallel, we can choose 4p5 = 0 and h2 = h3.
Equation (58) then simplifies to (60). Left-multiplication

of (60) by hT
2 further simplifies it to (71). Applying SP4

to (71) yields θ1.

hT
2

0RT
1

1p5 = hT
2

(
1p2 +

2p3 +
3p4

)
(71)

We rephrase (60) and insert θ1, such that we obtain (72).
Leveraging norm-preservation, (72) further simplifies to (73).
We apply SP3 to (73) to retrieve θ3.

2R3
3p4 +

2p3 = 1RT
2

(
0R∗T

1
1p5 − 1p2

)
(72)∥∥2R3

3p4 +
2p3

∥∥ =
∥∥0R∗T

1
1p5 − 1p2

∥∥ (73)

We obtain θ2, θ4, θ5 by following the same procedure as in
the previous case.

If the second and third axis are parallel while the third
and fourth axis intersect, we can choose 3p4 = 0 and
h2 = h3. This simplifies (58) to (74). Left-multiplication
of (74) by hT

2 further simplifies it to (75).
0RT

1
1p5 = 1p2 +

1R2

(
2p3 +

2R3
3R4

4p5

)
(74)

hT
2

0RT
1

1p5 − hT
2

3R4
4p5 = hT

2

(
1p2 +

2p3

)
(75)

Further, we rephrase (59) as (76). Left-multiplication by hT
2

and right-multiply by h5 simplifies (76) to (77). The two
equations (75) and (77) now resemble a system of equations
that we can solve for θ1, θ4 through SP6.

1RT
2

0RT
1

0R∗
5
4RT

5 − 2R3
3R4 = 0 (76)

hT
2

0RT
1

0R∗
5h5 − hT

2
3R4h5 = 0 (77)

We rephrase (58) as (78) and insert θ1, θ4. Leveraging norm-
preservation (78) simplifies to (79). Applying SP3 to (79)
yields θ3.

1RT
2

(
0R∗T

1
1p5 − 1p2

)
= 2R3

3R∗
4
4p5 +

2p3 (78)∥∥0R∗T
1

1p5 − 1p2

∥∥ =
∥∥2R3

3R∗
4
4p5 +

2p3

∥∥ (79)

Inserting θ1, θ3, θ4 back into (74) results in (80), from which
we obtain θ2 via SP1.

0R∗T
1

1p5 − 1p2 = 1R2

(
2p3 +

2R∗
3
3R∗

4
4p5

)
(80)

Finally, we rephrase (59) and insert θ1, θ2, θ3, θ4 to ob-
tain (81), where hn represents a normal vector to h5.
Applying SP1 to (81) then yields θ5.

4R5hn = 3R∗T
4

2R∗T
3

1R∗T
2

0R∗T
1

0R∗
5hn (81)

If the second and third axis are parallel while the third
and fourth axis intersect, and the fourth and fifth axis are
parallel, we can choose 3p4 = 0, h2 = h3, and h4 = h5.
This simplifies (58) to (74). We rephrase (59) as (82). Left-
and right-multiplication of (82) with hT

2 and h5 simplifies
the equation to (83). Applying SP4 to (83) yields θ1.

0RT
1

0R∗
5 = 1R2

2R3
3R4

4R5 (82)

hT
1

0RT
1

0R∗
5h5 = hT

1 h5 (83)

We insert θ1 into (74), and, after left-multiplication with hT
2 ,

obtain (84). Applying SP4 to (84) yields θ4.

hT
2

3R4
4p5 = hT

2

(
0R∗T

1
1p5 − 1p2 − 2p3

)
(84)



We obtain θ3, θ4, θ5 by following the same procedure as in
the previous case where the fourth and fifth axis were not
parallel.

If the first three axes are parallel, we can choose
h1 = h2 = h3. We rephrase (59) according to (85). Right-
multiplication of (85) by h1 results in (86), to which we
apply SP2 to obtain θ4, θ5.

4R5
0R∗T

5 = 3RT
4

2RT
3

1RT
2

0RT
1 (85)

4R5
0R∗T

5 h1 = 3RT
4 h1 (86)

As the first three axes are parallel, such that h1 = h2 = h3,
their induced rotation can be described by a single rotation
0R3 about one of the equivalent axes. The rotation angle
hereby consists of the sum of all three rotations, i.e., θ1,2,3 =
θ1+ θ2+ θ3. Using this definition, inserting θ4, θ5 into (59),
and rephrasing it yields (87). We apply SP1 to (87) to obtain
θ1,2,3.

0R3hn = 0R∗
5
4R∗T

5
3R∗T

4 hn (87)

Inserting the obtained values for θ4, θ5 and θ1,2,3
into (58) yields, after rephrasing, (88). Leveraging norm-
preservation (88) simplifies to (89). We apply SP1 to (89) to
obtain θ2. After inserting θ2 back into (88), we can directly
appls SP1 to obtain θ1.

1p5 − 0R∗
3

(
3p4 +

3R∗
4
4p5

)
= 0R1

(
1p2 +

1R2
2p3

)
(88)∥∥1p5 − 0R∗

3

(
3p4 +

3R∗
4
4p5

)∥∥ =
∥∥1p2 +

1R2
2p3

∥∥
(89)

Finally, we use the definition of 0R∗
3 = 0R1

1R2
2R3, insert

θ1, θ2, and right-multiply by hn – a normal vector to h3 –
to obtain (90). We obtain θ3 by applying SP1 to (90).

2R3hn = 1R∗T
2

0R∗T
1

0R∗
3hn (90)

If the first three axes are parallel to each other, while
the last two axes are also parallel, we can choose
h1 = h2 = h3 and h4 = h5. First, we left-multiply (58) by
hT
1 to obtain (91). We then apply SP4 to (91) to obtain θ4.

hT
1

3R4
4p5 = hT

1

(
1p5 − 1p2 − 2p3 − 3p4

)
(91)

We insert θ4 into (59), rephrase according to (92), and right-
multiply with h1 to obtain (93). Applying SP1 to (93) then
yields θ5.

4R5
0R∗T

5 = 3R∗T
4

2RT
3

1RT
2

0RT
1 (92)

4R5
0R∗T

5 h1 = 3R∗T
4 h1 (93)

Starting from (87), we then follow the same procedure as
proposed in the last case – where h4 ̸= h5 – to obtain
θ1, θ2, θ3.

If the second, third, and fourth axis are parallel, we can
choose h2 = h3 = h4. We rephrase (58) as done in (89) and
left-multiply with hT

2 to obtain (94). Applying SP4 to (94)
yields θ1.

hT
2

0RT
1

1p5 = hT
2

(
1p2 +

2p3 +
3p4 +

4p5

)
(94)

Rephrasing (59) and inserting θ1 yields (95), which, after
right-multiplication with h2 simplifies to (96). We apply SP1
to (96) to obtain θ5.

4R5
0R∗T

5
0R∗

1 = 3RT
4

2RT
3

1RT
2 (95)

4R5
0R∗T

5
0R∗

1h2 = h2 (96)

Just like in (87), we can represent 1R4 = 1R2
2R3

3R4 via
a single rotation about one of the three parallel axes (e.g.,
h2) by a single angle θ2,3,4 = θ2+ θ3+ θ4. To obtain θ2,3,4,
we insert θ1, θ5 into (59), which yields (97), where hn is
a vector normal to the parallel axes. Applying SP1 to (97)
yields θ2,3,4.

1R4hn = 0R∗T
1

0R∗
5
4R∗T

5 hn (97)

We left-multiply (58) by 0RT
4 = 1R∗T

4
1R∗T

0 and rephrase
it such that we obtain (98). Using norm-preservation on (98)
yields (99). Applying SP3 to (99) yields θ3. We insert θ3
back into (98) and then directly apply SP1 to obtain θ4.

1R∗T
4

(
0R∗T

1
1p5 − 1p2

)
− 4p5 = 3RT

4

(
2RT

3
2p3 +

3p4

)
(98)∥∥1R∗T

4

(
0R∗T

1
1p5 − 1p2

)
− 4p5

∥∥ =
∥∥2RT

3
2p3 +

3p4

∥∥
(99)

Inserting θ3, θ4 into the definition of 1R4 yields (100), where
hn represent a normal vector to the three parallel axes.
Applying SP1 to (100) finally yields θ2.

1R2hn = 1R∗
4
3R∗T

4
2R∗T

3 hn (100)

If the last three axes intersect in a common point
(i.e., form a spherical wrist), we can choose 3p4 =
4p5 = 0, which simplifies (58) to (101). Leveraging norm-
preservation, we further obtain (102), to which we apply
SP3 to retrieve θ1. We then insert θ1 back into (101) and
subsequently use SP1 to obtain θ2.

0RT
1

1p5 − 1p2 = 1R2
2p3 (101)∥∥0RT

1
1p5 − 1p2

∥∥ =
∥∥1R2

2p3

∥∥ (102)

We rephrase (59) as (103). Right-multiplication with h5

simplifies (103) to (104), to which we apply SP2 to obtain
θ3, θ4

2RT
3

1RT
2

0RT
1

0R∗
5 = 3R4

4R5 (103)
2RT

3
1RT

2
0RT

1
0R∗

5h5 = 3R4h5 (104)

We obtain θ5 by following the same steps as for (81), where
we insert θ1, θ2, θ3, θ4 into (59), right multiply with a normal
vector to h5, and apply SP1.

If the last three axes intersect to form a spherical wrist,
while the first two axes intersect in a point separate to
that of the wrist, we can choose 1p2 = 0 in addition to
3p4 = 4p5 = 0, which simplifies (101) to (105). We apply
SP2 to (105) to obtain θ1, θ2.

0RT
1

1p5 = 1R2
2p3 (105)



For θ3, θ4, θ5 we follow the same procedure as in the
previous case where the first two axes are non-intersecting.

In any case, we use kinematic inversion and check if
the inverted kinematic chain matches a case that is more
specialized (i.e., represents a case that employs simpler
subproblems) than that of the non-inverted one. We hereby
first check for three parallel axes, then for two intersecting
axes at either end of the manipulator and then all the others.
E.g., if the first three axes of a manipulator are parallel and
the last two axes intersect, we assign the manipulator to
the kinematic family of three initial parallel axes. If, even
after kinematic inversion, the manipulator does not match
any of the proposed cases, it is to our current knowledge not
solvable via our method.
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